Proline to arginine mutations in FGF receptors 1 and 3 result in Pfeiffer and Muenke craniosynostosis syndromes through enhancement of FGF binding affinity.

نویسندگان

  • Omar A Ibrahimi
  • Fuming Zhang
  • Anna V Eliseenkova
  • Robert J Linhardt
  • Moosa Mohammadi
چکیده

Identical proline-->arginine gain-of-function mutations in fibroblast growth factor receptor (FGFR) 1 (Pro252Arg), FGFR2 (Pro253Arg) and FGFR3 (Pro250Arg), result in type I Pfeiffer, Apert and Muenke craniosynostosis syndromes, respectively. Here, we characterize the effects of proline-->arginine mutations in FGFR1c and FGFR3c on ligand binding using surface plasmon resonance and X-ray crystallography. Both Pro252Arg FGFR1c and Pro250Arg FGFR3c exhibit an enhancement in ligand binding in comparison to their respective wild-type receptors. Interestingly, binding of both mutant receptors to FGF9 was notably enhanced and implicates FGF9 as a potential pathophysiological ligand for mutant FGFRs in mediating craniosynostosis. The crystal structure, of Pro252Arg FGFR1c in complex with FGF2, demonstrates that the enhanced ligand binding is due to an additional set of receptor-ligand hydrogen bonds, similar to those gain-of-function interactions that occur in the Apert syndrome Pro253Arg FGFR2c-FGF2 crystal structure. However, unlike the Apert syndrome Pro253Arg FGFR2c mutant, neither the Pfeiffer syndrome Pro250Arg FGFR1c mutant nor the Muenke syndrome Pro250Arg FGFR3c mutant bound appreciably to FGF7 or FGF10. This observation provides a potential explanation for why the limb phenotypes, observed in type I Pfeiffer and Muenke syndromes, are less severe than the limb abnormalities observed in Apert syndrome. Hence, although analogous proline-->arginine mutations in FGFR1-3 act through a common structural mechanism to result in gain-of-function, differences in the primary sequence among FGFRs result in varying effects on ligand binding specificity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apert syndrome mutations in fibroblast growth factor receptor 2 exhibit increased affinity for FGF ligand.

Dominantly acting mutations of the fibroblast growth factor (FGF) receptor 2 (FGFR2) gene have been implicated in various craniosynostosis syndromes. Apert syndrome, characterized in addition by syndactyly of the limbs, involves specific mutations at two adjacent residues, Ser252Trp and Pro253Arg, predicted to lie in the linker region between IgII and IgIII of the FGFR2 ligand-binding domain. W...

متن کامل

Crouzon syndrome affects suture development and is not associated with limb abnormalities, whereas Pfeiffer syndrome and Jackson-Weiss syndrome are characterized by both craniosynostosis and broad medially displaced toes

Mutations in fibroblast growth factor receptor (FGFR) 2 are responsible for several clinically distinct craniosynostosis syndromes in humans (Naski and Ornitz, 1998; Ornitz and Marie, 2002; Wilkie, 1997). These syndromes share a common feature; premature fusion of at least one of the cranial sutures. However, craniosynostosis syndromes also have distinct facial features and some have characteri...

متن کامل

A Pro250Arg substitution in mouse Fgfr1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures.

Pfeiffer syndrome is a classic form of craniosynostosis that is caused by a proline-->arginine substitution at amino acid 252 (Pro252Arg) in fibroblast growth factor receptor 1 (FGFR1). Here we show that mice carrying a Pro250Arg mutation in Fgfr1, which is orthologous to the Pfeiffer syndrome mutation in humans, exhibit anterio-posteriorly shortened, laterally widened and vertically heightened...

متن کامل

Ddh235 2313..2324

Gain-of-function missense mutations in FGF receptor 2 (FGFR2) are responsible for a variety of craniosynostosis syndromes including Apert syndrome (AS), Pfeiffer syndrome (PS) and Crouzon syndrome (CS). Unlike the majority of FGFR2 mutations, S252W and P253R AS mutations and a D321A PS mutation retain ligand-dependency and are also associated with severe limb pathology. In addition, a recently ...

متن کامل

Biochemical analysis of pathogenic ligand-dependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities.

Gain-of-function missense mutations in FGF receptor 2 (FGFR2) are responsible for a variety of craniosynostosis syndromes including Apert syndrome (AS), Pfeiffer syndrome (PS) and Crouzon syndrome (CS). Unlike the majority of FGFR2 mutations, S252W and P253R AS mutations and a D321A PS mutation retain ligand-dependency and are also associated with severe limb pathology. In addition, a recently ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 2004